Learning to Analyze Binary Computer Code

نویسندگان

  • Nathan E. Rosenblum
  • Xiaojin Zhu
  • Barton P. Miller
  • Karen Hunt
چکیده

We present a novel application of structured classification: identifying function entry points (FEPs, the starting byte of each function) in program binaries. Such identification is the crucial first step in analyzing many malicious, commercial and legacy software, which lack full symbol information that specifies FEPs. Existing pattern-matching FEP detection techniques are insufficient due to variable instruction sequences introduced by compiler and link-time optimizations. We formulate the FEP identification problem as structured classification using Conditional Random Fields. Our Conditional Random Fields incorporate both idiom features to represent the sequence of instructions surrounding FEPs, and control flow structure features to represent the interaction among FEPs. These features allow us to jointly label all FEPs in the binary. We perform feature selection and present an approximate inference method for massive program binaries. We evaluate our models on a large set of real-world test binaries, showing that our models dramatically outperform two existing, standard disassemblers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BinPro: A Tool for Binary Backdoor Accountability in Code Audits by Dhaval Miyani A thesis submitted in conformity with the requirements

BinPro: A Tool for Binary Backdoor Accountability in Code Audits Dhaval Miyani Master of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto 2016 Highly security sensitive organizations often perform source code audits on software they use. However, after the audit is performed, they must still perform a binary code audit to ensure the binary provide...

متن کامل

Investigating the Role of Code Smells in Preventive Maintenance

The quest for improving the software quality has given rise to various studies which focus on the enhancement of the quality of software through various processes. Code smells, which are indicators of the software quality have not been put to an extensive study for as to determine their role in the prediction of defects in the software. This study aims to investigate the role of code smells in ...

متن کامل

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

Compressed Image Hashing using Minimum Magnitude CSLBP

Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which i...

متن کامل

Differentiating Code from Data in x86 Binaries

Robust, static disassembly is an important part of achieving high coverage for many binary code analyses, such as reverse engineering, malware analysis, reference monitor in-lining, and software fault isolation. However, one of the major difficulties current disassemblers face is differentiating code from data when they are interleaved. This paper presents a machine learning-based disassembly a...

متن کامل

Development of a Unique Biometric-based Cryptographic Key Generation with Repeatability using Brain Signals

Network security is very important when sending confidential data through the network. Cryptography is the science of hiding information, and a combination of cryptography solutions with cognitive science starts a new branch called cognitive cryptography that guarantee the confidentiality and integrity of the data. Brain signals as a biometric indicator can convert to a binary code which can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008